References

Ahmed et al., 2012

Ahmed, A., Aly, M., Gonzalez, J., Narayanamurthy, S., & Smola, A. J. (2012). Scalable inference in latent variable models. Proceedings of the fifth ACM international conference on Web search and data mining (pp. 123–132).

Aji & McEliece, 2000

Aji, S. M., & McEliece, R. J. (2000). The generalized distributive law. IEEE transactions on Information Theory, 46(2), 325–343.

Bahdanau et al., 2014

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bishop, 1995

Bishop, C. M. (1995). Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1), 108–116.

Bishop, 2006

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Bojanowski et al., 2017

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.

Bollobas, 1999

Bollobás, B. (1999). Linear analysis. Cambridge University Press, Cambridge.

Boyd & Vandenberghe, 2004

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge, England: Cambridge University Press.

Brown & Sandholm, 2017

Brown, N., & Sandholm, T. (2017). Libratus: the superhuman ai for no-limit poker. IJCAI (pp. 5226–5228).

Campbell et al., 2002

Campbell, M., Hoane Jr, A. J., & Hsu, F.-h. (2002). Deep blue. Artificial intelligence, 134(1-2), 57–83.

Canny, 1987

Canny, J. (1987). A computational approach to edge detection. Readings in computer vision (pp. 184–203). Elsevier.

Cho et al., 2014

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Chowdhury, 2010

Chowdhury, G. G. (2010). Introduction to modern information retrieval. Facet publishing.

Chung et al., 2014

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Csiszar, 2008

Csiszár, I. (2008). Axiomatic characterizations of information measures. Entropy, 10(3), 261–273.

DeCock, 2011

De Cock, D. (2011). Ames, iowa: alternative to the boston housing data as an end of semester regression project. Journal of Statistics Education, 19(3).

DeCandia et al., 2007

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., … Vogels, W. (2007). Dynamo: amazon’s highly available key-value store. ACM SIGOPS operating systems review (pp. 205–220).

Doucet et al., 2001

Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo methods in practice (pp. 3–14). Springer.

Duchi et al., 2011

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121–2159.

Dumoulin & Visin, 2016

Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285.

Edelman et al., 2007

Edelman, B., Ostrovsky, M., & Schwarz, M. (2007). Internet advertising and the generalized second-price auction: selling billions of dollars worth of keywords. American economic review, 97(1), 242–259.

Flammarion & Bach, 2015

Flammarion, N., & Bach, F. (2015). From averaging to acceleration, there is only a step-size. Conference on Learning Theory (pp. 658–695).

Gatys et al., 2016

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016). Image style transfer using convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2414–2423).

Ginibre, 1965

Ginibre, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. Journal of Mathematical Physics, 6(3), 440–449.

Girshick, 2015

Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision (pp. 1440–1448).

Girshick et al., 2014

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580–587).

Glorot & Bengio, 2010

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 249–256).

Goh, 2017

Goh, G. (2017). Why momentum really works. Distill. URL: http://distill.pub/2017/momentum, doi:10.23915/distill.00006

Goldberg et al., 1992

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–71.

Goodfellow et al., 2016

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

Goodfellow et al., 2014

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems (pp. 2672–2680).

Gotmare et al., 2018

Gotmare, A., Keskar, N. S., Xiong, C., & Socher, R. (2018). A closer look at deep learning heuristics: learning rate restarts, warmup and distillation. arXiv preprint arXiv:1810.13243.

Graves & Schmidhuber, 2005

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional lstm and other neural network architectures. Neural networks, 18(5-6), 602–610.

Gunawardana & Shani, 2015

Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. Recommender systems handbook (pp. 265–308). Springer.

Guo et al., 2017

Guo, H., Tang, R., Ye, Y., Li, Z., & He, X. (2017). Deepfm: a factorization-machine based neural network for ctr prediction. Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 1725–1731).

Hadjis et al., 2016

Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., & Ré, C. (2016). Omnivore: an optimizer for multi-device deep learning on cpus and gpus. arXiv preprint arXiv:1606.04487.

Hazan et al., 2008

Hazan, E., Rakhlin, A., & Bartlett, P. L. (2008). Adaptive online gradient descent. Advances in Neural Information Processing Systems (pp. 65–72).

He et al., 2017a

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE international conference on computer vision (pp. 2961–2969).

He et al., 2016a

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

He et al., 2016b

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. European conference on computer vision (pp. 630–645).

He & Chua, 2017

He, X., & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (pp. 355–364).

He et al., 2017b

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. Proceedings of the 26th international conference on world wide web (pp. 173–182).

Hebb & Hebb, 1949

Hebb, D. O., & Hebb, D. (1949). The organization of behavior. Vol. 65. Wiley New York.

Hennessy & Patterson, 2011

Hennessy, J. L., & Patterson, D. A. (2011). Computer architecture: a quantitative approach. Elsevier.

Herlocker et al., 1999

Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1999 (pp. 230–237).

Hidasi et al., 2015

Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939.

Hochreiter & Schmidhuber, 1997

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.

Hoyer et al., 2009

Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J., & Schölkopf, B. (2009). Nonlinear causal discovery with additive noise models. Advances in neural information processing systems (pp. 689–696).

Hu et al., 2018

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132–7141).

Hu et al., 2008

Hu, Y., Koren, Y., & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. 2008 Eighth IEEE International Conference on Data Mining (pp. 263–272).

Huang et al., 2017

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700–4708).

Ioffe, 2017

Ioffe, S. (2017). Batch renormalization: towards reducing minibatch dependence in batch-normalized models. Advances in neural information processing systems (pp. 1945–1953).

Ioffe & Szegedy, 2015

Ioffe, S., & Szegedy, C. (2015). Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Izmailov et al., 2018

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., & Wilson, A. G. (2018). Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407.

Jia et al., 2018

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F., … others. (2018). Highly scalable deep learning training system with mixed-precision: training imagenet in four minutes. arXiv preprint arXiv:1807.11205.

Jouppi et al., 2017

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., … others. (2017). In-datacenter performance analysis of a tensor processing unit. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA) (pp. 1–12).

Karras et al., 2017

Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

Kim, 2014

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Kingma & Ba, 2014

Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Koller & Friedman, 2009

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press.

Kolter, 2008

Kolter, Z. (2008). Linear algebra review and reference. Available online: http.

Koren, 2009

Koren, Y. (2009). Collaborative filtering with temporal dynamics. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 447–456).

Koren et al., 2009

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, pp. 30–37.

Krizhevsky et al., 2012

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems (pp. 1097–1105).

Kung, 1988

Kung, S. Y. (1988). Vlsi array processors. Englewood Cliffs, NJ, Prentice Hall, 1988, 685 p. Research supported by the Semiconductor Research Corp., SDIO, NSF, and US Navy.

LeCun et al., 1998

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & others. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, 2017

Li, M. (2017). Scaling Distributed Machine Learning with System and Algorithm Co-design (Doctoral dissertation). PhD Thesis, CMU.

Li et al., 2014

Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., … Su, B.-Y. (2014). Scaling distributed machine learning with the parameter server. 11th $\$USENIX$\$ Symposium on Operating Systems Design and Implementation ($\$OSDI$\$ 14) (pp. 583–598).

Lin et al., 2013

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:1312.4400.

Lin et al., 2017

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision (pp. 2980–2988).

Lin et al., 2010

Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., … others. (2010). Imagenet classification: fast descriptor coding and large-scale svm training. Large scale visual recognition challenge.

Lipton & Steinhardt, 2018

Lipton, Z. C., & Steinhardt, J. (2018). Troubling trends in machine learning scholarship. arXiv preprint arXiv:1807.03341.

Liu et al., 2016

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: single shot multibox detector. European conference on computer vision (pp. 21–37).

Long et al., 2015

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).

Loshchilov & Hutter, 2016

Loshchilov, I., & Hutter, F. (2016). Sgdr: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983.

Lowe, 2004

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91–110.

Luo et al., 2018

Luo, P., Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regularization in batch normalization. arXiv preprint.

Maas et al., 2011

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word vectors for sentiment analysis. Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies-volume 1 (pp. 142–150).

McCulloch & Pitts, 1943

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

McMahan et al., 2013

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., … others. (2013). Ad click prediction: a view from the trenches. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1222–1230).

Mikolov et al., 2013a

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov et al., 2013b

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems (pp. 3111–3119).

Mirhoseini et al., 2017

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., … Dean, J. (2017). Device placement optimization with reinforcement learning. Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 2430–2439).

Morey et al., 2016

Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J. (2016). The fallacy of placing confidence in confidence intervals. Psychonomic bulletin & review, 23(1), 103–123.

Nesterov & Vial, 2000

Nesterov, Y., & Vial, J.-P. (2000). Confidence level solutions for stochastic programming, Stochastic Programming E-Print Series.

Nesterov, 2018

Nesterov, Y. (2018). Lectures on convex optimization. Vol. 137. Springer.

Neyman, 1937

Neyman, J. (1937). Outline of a theory of statistical estimation based on the classical theory of probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 236(767), 333–380.

Pennington et al., 2017

Pennington, J., Schoenholz, S., & Ganguli, S. (2017). Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. Advances in neural information processing systems (pp. 4785–4795).

Pennington et al., 2014

Pennington, J., Socher, R., & Manning, C. (2014). Glove: global vectors for word representation. Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543).

Peters et al., 2017

Peters, J., Janzing, D., & Schölkopf, B. (2017). Elements of causal inference: foundations and learning algorithms. MIT press.

Petersen et al., 2008

Petersen, K. B., Pedersen, M. S., & others. (2008). The matrix cookbook. Technical University of Denmark, 7(15), 510.

Polyak, 1964

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1–17.

Quadrana et al., 2018

Quadrana, M., Cremonesi, P., & Jannach, D. (2018). Sequence-aware recommender systems. ACM Computing Surveys (CSUR), 51(4), 66.

Radford et al., 2015

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

Reddi et al., 2019

Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint arXiv:1904.09237.

Reed & DeFreitas, 2015

Reed, S., & De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint arXiv:1511.06279.

Ren et al., 2015

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object detection with region proposal networks. Advances in neural information processing systems (pp. 91–99).

Rendle, 2010

Rendle, S. (2010). Factorization machines. 2010 IEEE International Conference on Data Mining (pp. 995–1000).

Rendle et al., 2009

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2009). Bpr: bayesian personalized ranking from implicit feedback. Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence (pp. 452–461).

Rumelhart et al., 1988

Rumelhart, D. E., Hinton, G. E., Williams, R. J., & others. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1.

Russell & Norvig, 2016

Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited,.

Salton et al., 1975

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613–620.

Santurkar et al., 2018

Santurkar, S., Tsipras, D., Ilyas, A., & Madry, A. (2018). How does batch normalization help optimization? Advances in Neural Information Processing Systems (pp. 2483–2493).

Sarwar et al., 2001

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., & others. (2001). Item-based collaborative filtering recommendation algorithms. Www, 1, 285–295.

Schein et al., 2002

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 253–260).

Schuster & Paliwal, 1997

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681.

Sedhain et al., 2015

Sedhain, S., Menon, A. K., Sanner, S., & Xie, L. (2015). Autorec: autoencoders meet collaborative filtering. Proceedings of the 24th International Conference on World Wide Web (pp. 111–112).

Sergeev & DelBalso, 2018

Sergeev, A., & Del Balso, M. (2018). Horovod: fast and easy distributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799.

Shannon, 1948

Shannon, C. E. (1948 , 7). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.

Silver et al., 2016

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., … others. (2016). Mastering the game of go with deep neural networks and tree search. nature, 529(7587), 484.

Simonyan & Zisserman, 2014

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.

Smola & Narayanamurthy, 2010

Smola, A., & Narayanamurthy, S. (2010). An architecture for parallel topic models. Proceedings of the VLDB Endowment, 3(1-2), 703–710.

Srivastava et al., 2014

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.

Strang, 1993

Strang, G. (1993). Introduction to linear algebra. Vol. 3. Wellesley-Cambridge Press Wellesley, MA.

Su & Khoshgoftaar, 2009

Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009.

Sukhbaatar et al., 2015

Sukhbaatar, S., Weston, J., Fergus, R., & others. (2015). End-to-end memory networks. Advances in neural information processing systems (pp. 2440–2448).

Sutskever et al., 2013

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. International conference on machine learning (pp. 1139–1147).

Szegedy et al., 2017

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017). Inception-v4, inception-resnet and the impact of residual connections on learning. Thirty-First AAAI Conference on Artificial Intelligence.

Szegedy et al., 2015

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., … Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1–9).

Szegedy et al., 2016

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).

Tallec & Ollivier, 2017

Tallec, C., & Ollivier, Y. (2017). Unbiasing truncated backpropagation through time. arXiv preprint arXiv:1705.08209.

Tang & Wang, 2018

Tang, J., & Wang, K. (2018). Personalized top-n sequential recommendation via convolutional sequence embedding. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (pp. 565–573).

Teye et al., 2018

Teye, M., Azizpour, H., & Smith, K. (2018). Bayesian uncertainty estimation for batch normalized deep networks. arXiv preprint arXiv:1802.06455.

Tieleman & Hinton, 2012

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2), 26–31.

Treisman & Gelade, 1980

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97–136.

Toscher et al., 2009

Töscher, A., Jahrer, M., & Bell, R. M. (2009). The bigchaos solution to the netflix grand prize. Netflix prize documentation, pp. 1–52.

Uijlings et al., 2013

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104(2), 154–171.

VanLoan & Golub, 1983

Van Loan, C. F., & Golub, G. H. (1983). Matrix computations. Johns Hopkins University Press.

Vaswani et al., 2017

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems (pp. 5998–6008).

Wang et al., 2018

Wang, L., Li, M., Liberty, E., & Smola, A. J. (2018). Optimal message scheduling for aggregation. NETWORKS, 2(3), 2–3.

Wang et al., 2016

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., & Owens, J. D. (2016). Gunrock: a high-performance graph processing library on the gpu. ACM SIGPLAN Notices (p. 11).

Wasserman, 2013

Wasserman, L. (2013). All of statistics: a concise course in statistical inference. Springer Science & Business Media.

Watkins & Dayan, 1992

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279–292.

Welling & Teh, 2011

Welling, M., & Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin dynamics. Proceedings of the 28th international conference on machine learning (ICML-11) (pp. 681–688).

Wigner, 1958

Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. Ann. Math (pp. 325–327).

Williams et al., 2009

Williams, S., Waterman, A., & Patterson, D. (2009). Roofline: An insightful visual performance model for floating-point programs and multicore architectures. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).

Wood et al., 2011

Wood, F., Gasthaus, J., Archambeau, C., James, L., & Teh, Y. W. (2011). The sequence memoizer. Communications of the ACM, 54(2), 91–98.

Wu et al., 2017

Wu, C.-Y., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017). Recurrent recommender networks. Proceedings of the tenth ACM international conference on web search and data mining (pp. 495–503).

Xiao et al., 2017

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Xiong et al., 2018

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., & Stolcke, A. (2018). The microsoft 2017 conversational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5934–5938).

Ye et al., 2011

Ye, M., Yin, P., Lee, W.-C., & Lee, D.-L. (2011). Exploiting geographical influence for collaborative point-of-interest recommendation. Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 325–334).

You et al., 2017

You, Y., Gitman, I., & Ginsburg, B. (2017). Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888.

Zaheer et al., 2018

Zaheer, M., Reddi, S., Sachan, D., Kale, S., & Kumar, S. (2018). Adaptive methods for nonconvex optimization. Advances in Neural Information Processing Systems (pp. 9793–9803).

Zeiler, 2012

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Zhang et al., 2019

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: a survey and new perspectives. ACM Computing Surveys (CSUR), 52(1), 5.

Zhu et al., 2017

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE international conference on computer vision (pp. 2223–2232).